
Certified Selenium Tester

Part 3
Using Selenium WebDriver

ATTAFI YOUSRA

1

Levels of knowledge of learning objectives

2

K1:
remember

1

K2:
understand

2

K3: apply

3

K4: analyze

4

Logging and reporting mechanisms

3

Logs and reports

Logging of automated
test execution, done
correctly, can greatly

help a test analyst
toQuickly determine
whether the failure
was caused by the

SUT or not.

Good log
management can

make thedifference
between an

automation project
that fails and one that
succeeds in delivering

value.

Logging is a way to
trackthe eventsthat

occur during
execution.

This recording can be
done before and after
a step and can include
the data that was used

in the step and the
behavior that

occurred as a result of
the step.The more

detailed this record is,
the better it will help

to understand the
result of the test run.

4

Logs and reports

• Reporting is based on the recording of execution logs, but they are different.

• The recording of execution logs provides information on the execution of automated scripts to the
test analyst and to the automation engineers responsible for correcting the tests if necessary.

• Reporting is to provide this execution information as well as other contextual information to the
various stakeholders, external and external, who need or want it.

• It is important for test automation engineers to determine who wants or needs test execution reports, and
what information is of interest to them.

5

Reporting:
distribution

•There are several ways to manage the distribution
of automated test reporting.

•For example, by putting them at the disposition
of stakeholders so they can download them
whenever they want.

•Or by sending them to stakeholders who wish to
receive them as soon as they are ready.

•In both cases, it is necessary seek to automate the
creation and distribution of reports to eliminate a
manual task to be carried out.

6

Reporting:
content

• Reports should contain:

• an overview of the tested system

• an overview of the environment(s) on which the
tests were carried out

• the results obtained during execution.

• Each stakeholder may have a different view of the
results and these needs must be met by the automation
team.

• Often stakeholders want to see changes in test results,
not just their status at a specific point in time.

7

Test

execution

layer

Rather than completely creating such scripts,instead we can
use existing unit test librariesthat facilitate the execution of

tests and the management of execution results.

One way to implement such a mechanism is to fully code the
test automation scripts. Such scripts can then be executed like

any other script, for example by Python.

The test automation solution must provide a mechanism that
implements the test execution layer.

8

pytest

•Pytest is a framework test automation that makes it easy to

write tests for Python, but also for Selenium WebDriver with

Python.

•Pytest makes it easy writing simple tests, but also makes it

possible to more complex automated tests.

•When called, Pytest executes all tests in the current directory or

its subdirectories. It specifically searches for all files that match

the patterns:

•"test__*.py" or :*__test.py" and then run them.

•Pytest will execute all methods containing the characters “test”

in their name.

9

pytest

•When run without options, pytestruns all tests in the current directory and its subdirectories

•Some possible options:

pytest -v : Verbose mode that displays full test names.

pytest -q : Silent mode which displays less information on output.

pytest --html=report.html : Adds a report in an HTML file.

•Tests can be annotated to be treated in a particular way.

•@pytest.mark.skip before a test definition, prevents pytest from running the test.

•@pytest.mark.xfail before a test definition, it informs pytest that the test should fail.

1010

Python logs

•The Python logging library has five different levels of messages that can be

logged. From lowest to highest level:

• DEBUG: to diagnose problems

• INFO: to inform about the course of the test

• WARNING: something unexpected happened, a potential problem

• ERROR: A major problem has occurred

• CRITICAL: a critical problem has occurred

11

Assertion

in Python

•When executing a test case, it is important to test an actual

behavior of the system.

•Each test case must therefore have expected results linked to

actions of the SUT that can be verified. Python has a built-in

mechanism to check whether the correct data or behavior has

occurred: assertion.

•An assertion is a statement that is expected to be true at some

point in the script.

•Syntax:

•assert sumVariable==7, "sumVariable should equal 7."

12

Reporting and logs: Selenium WD test case steps

•A step of a Selenium WD test case usually includes the following actions.

• Locate a displayed web element.

• Take action on this web element.

• Make sure the situation went well.

•For the first action (1), if the element is not found, or is found in an incorrect state, an exception is thrown.

•For action two (2), if the attempt to act on the web element fails, an exception is thrown.

•For action three (3), we can use an assertion to verify that the expected behavior has occurred, or that the expected value has
been received.

13

First steps

14

Start a test

automation

session

To test a Chrome browser, you must first
download the browser driver and install
this file on the tester's workstation.

This is usually achieved by editing the
Path environment variable so that the
operating system finds it when it needs it.

Automation engineers should familiarize
themselves with the documentation
available on the various support websites
for the various browsers, and the
Selenium WebDriver support site.

15

Start a test automation session

•To work with web pages, you must first open a web browser.

•This can be achieved by creating a WebDriver object. Instantiating the WebDriver object creates the

programming interface between a script and the web browser. It will also run a WebDriver process if

needed for a particular web browser.

•It will also launch the web browser itself.

•Example :

•from selenium import webdriver

•driver = webdriver.Chrome()

16

Navigate to a URL

•To navigate to the desired site page, we use the get() function

•Example :

•driver.get('https://wwww.python.org')

•After opening a page or navigating to a different page, it is advisable to check if the

correct page has been opened.

•The WebDriver object contains two useful attributes for this: current_url And title.

•Example :

•assert driver.current_url=='https://wwww.python.org'

•assert driver.title == 'Welcome to Python.org', errMsg

17

https://wwww.python.org
https://wwww.python.org

Navigating and Refreshing Pages

•To simulate forward and backward navigation in the web browser, one can use the

methods back() And forward() of the WebDriver object.

•Example :

•driver. back()

•driver. forward()

•It is also possible to refresh the current page with the web browser. This can be done by

calling WebDriver's refresh() method.

•Example :

•driver. refresh()

18

Closing

the

browser

•At the end of the test, you should close the web browser process and all other

driver processes that were running. If you don't close the browser, it will stay

open even after the test is finished.

•To close the browser controlled by webdriver, call the method quit() of the

webdriver object.

•Example :

•driver. quit()

•It is best to place the quit() function in the part of the test script that is

executed regardless of the test result.

•Typically, test libraries have their own mechanisms for setting and executing

test termination code – called “tear down”.

19

Close a browser window/tab

•To close a tab or a window, without stopping the driver

•driver.close()

•This method takes no parameters and closes the active tab/window.

•Change the context to the desired tab to be able to close this tab.

•After closing, calling any other WebDriver command other than

driver.switch_to.window() will then throw an exception NoSuchWindowException

since the object reference still points to the window that no longer exists.

20

Maximize / minimize windows

•Selenium allows minimizing and maximizing web browser windows and

putting it in full screen mode.

•The Python shortcuts for this function are:

•driver. maximize_window()

•driver.minimize_window()

•driver.fullscreen_window()

21

Take screenshots of web pages

22

Take screenshots of web pages

•Selenium cannot reliably verify the layout and appearance of web pages.

•Taking screenshots of a particular page or element on the screen allows them

to be checked visually.

•It is better to save them in the logs or in a known location, and manage file

naming (unique names and locations) so that the automation script does not

overwrite screenshots taken earlier in the execution.

23

Why take screenshots?

•Screenshots can be useful in the following cases:

• When a failure has occurred.

• When the test is very visual.

• When it comes to critical soft ware for safety

or the mission, which may require a test

audit.

24

When to take screenshots?

•Typically, the parts of test scripts that take
screenshots are placed right after the test steps
that control the user interface or in end functions
test (step “tear down").

•But since these captures are a valuable tool for
understanding the results of automated tests, they
can be made at any place deemed useful in the
script.

25

Scope of screenshots

•Screenshots can be taken at two different scopes:

• full browser page

• a single element in the browser page.

•Both methods use the same function call but are called from different contexts.

•If the state of the GUI changes rapidly, the screenshot taken may not show the
exact state of the page or the expected element.

26

Take a screenshot

•Screenshot of the whole screen

•driver.get_screenshot_as_file("c:\\temp\\sc.png")

•Screenshot of a specific webelement

•ele = driver.find_element_by_id("btLogin")

•ele.screenshot("c:\\temp\\sc_ele.png")

•Screenshot in base64 (for recording in base, for example)

•img_b64 = driver.get_screenshot_as_base_64("c:\\temp\\sc.png")

•img_b64 = ele.screenshot_as_base_64("c:\\temp\\sc_ele.png")

•Screenshot in png stored in binary in a variable

•png_str=driver.get_screenshot_as_png

•png_str = ele.screenshot_as_png

27

Locate GUI elements

28

DOM

•According to the W3C, the DOM is defined as

follows:

•"The W3C Document Object Model (DOM) is a

platform- and language-neutral interface that allows

programs and scripts to dynamically access and update

document content, structure, and style. ."

29

DOM

•When a webpage is loaded in the browser, the browser creates a DOM, modeling
the webpage as a tree of objects. This DOM defines a standard for accessing the
web page.

• The DOM defines:

• All HTML elements as objects.

• Properties of all HTML elements.

• The methods which can be used to access all HTML elements.

• The events Who affect all HTML elements.

30

Introduction

To do this, we use the methods
find_element_ Or

find_elements_ of WebDriver.

Most operations with WebDriver
require locating user interface
elements in the DOM of the

currently active screen.

31

find_element_,
find_elements_

•For searching, the following location methods can be used:

• by_id (id_)

• by_class_name (name)

• by_tag_name (name)

• by_xpath (xpath)

• by_css_selector (css_selector)

•The argument taken by the function is a string representing
the element or elements sought.

•The return values are different;

• find_element_returns a single web element

• find_elements_returns a list of web items

32

Localization
by HTML
methods:

By ID

•The element in the DOM:

•<element id="unique_id">

•The code to locate it:

•element_found=driver.find_element_by_id("unique_id")

•Benefits:

• Efficient way to carry out the operation.

• By definition, each ID must be unique within the HTML document.

• A tester can easily add IDs to the SUT

•Disadvantages:

• IDs can be generated automatically, which means they can be changed

dynamically.

• IDs are not appropriate for code that is used in multiple places

• A tester may not be allowed to modify the SUT code.

33

Localization
by HTML
methods:
By class

•The element in the DOM:

•<element class="class_name1">

•The code to locate it:

•element_found=driver.find_element_by_class_name("class_name1")

•Benefits :

• Class names can be used in multiple places in the DOM, but you can limit

the location to the loaded page (eg in a modal popup window).

• A tester can easily add class names to the SUT

•Disadvantages:

• Class names can be used in more than one place, so be careful not to

locate the wrong element.

• A tester may not be allowed to modify the SUT code.

34

Localization
by HTML
methods:

By tag name

•The element in the DOM:

•<H2>

•The code to locate it:

•element_found=driver.find_element_by_tag_name("H

3")

•Advantage :

• If a tag is unique to a page, you can restrict where to

search.

•Inconvenience :

• If a tag is not unique to a page, you may find the

wrong element.

35

Localization
by HTML
methods:

By link text

•The element in the DOM:

•Next Page

•The code to locate it:

•element_found=driver.find_element_by_link_text("Next Page")

•Or

•element_found=driver.find_element_by_partial_link_text("Next Pa")

•Benefits:

• Easy if the link text is unique to a page,

• If the link text is visible to the user, it's easy to tell what the test code is

looking for.

• Partial link text is less likely to change than full link text.

•Disadvantages:

• The link text is subject to change often.

• Using partial text can make it more difficult to uniquely identify a unique link.

36

Localization

by XPath

Methods

•XPath can be used to select specific nodes using different criteria in the

DOM, which is an HTML document.

•WebDriver can use XPath to find a specific node, and from there locate an

element.

•You can specify a pathabsolute or relative pathfrom a found node that

matches a criterion.

•Example of absolute path:

•element_found=driver.find_element_by_xpath("/html/body/form/in

put[2]")

•Example relative path:

•element_found=driver.find_element_by_xpath("//form2[@id=‘exact_

form']/input[2]")

•Both will return the second input field in the HTML snippet.

37

Localization

by XPath

Methods

•Benefits :

• You can find elements that don't have unique attributes(id,

class, name, etc.).

• You can use XPath in generic locators, using the different

"By" strategies (by id, by class, etc.) if needed.

•Disadvantages:

• Absolute XPath code is "fragile" and may not work after a

small change in the HTML structure.

• Relative XPath code may find wrong node if the attribute

or element you are looking for is not unique on the page.

• As XPath may be implemented differently across browsers,

additional effort may be required to run WebDriver tests in

each environment.

38

Localization

by CSS

selector

•The code to locate by CSS selector :

Element = driver.find_element_by_css_selector(‘p.paragraph’)

•Advantage:

• If an item is unique to a page, you can narrow where you search.

•Inconvenience :

• If an element is not unique to a page, you may find the wrong

element.

39

Location
by

predefined
conditions

•Selenium/Python integrates predefined conditions through the

module. expected_conditions which can be imported from

selenium.webdriver.support

•You can create custom condition classes, but the predefined

classes should satisfy most needs.

•These classes offer greater specificity than the locators mentioned

above: they don't just determine if an item exists, they also allow

check the specific states this element is in.

•For example, the element_to_be_selected() function not only

determines that the element exists, but it also checks if it is in a

selected state.

40

Location
by

predefined
conditions

•Some examples :

• alert_is_present

• element_selection_state_to_be(element, is_selected)

• element_to_be_clickable(locator)

• element_to_be_selected(element)

• frame_to_be_available_and_switch_to_it(locator)

• invisibility_of_element_located(locator)

• presence_of_element_located(locator)

• text_to_be_present_in_element(locator, text_)

• title_is(title)

• visibility_of_element_located(locator)

41

Get status of GUI elements

42

Get status of GUI elements

•There may be several reasons for which we need to access the information of an element.

• To make sure that the state is as expected at any point in the test.

• Make sure a control is in such a state that it can be manipulated as needed in the test
case

• Ensure that after the control has been manipulated, it is now in the expected state.

• Make sure that the expected results are correct after running a test.

•Some properties of a web element can be accessed using a method of the WebElement class.

•Not all web elements have properties.

43

Common properties
and access methodsProperty/Method arguments Returns Description

get_attribute() property to recover

property,

attribute or

None

Gets the property. If no

property, get the name

attribute. If neither, returns

None

get_property() property to recover property Gets the property.

is_displayed() boolean
Returns true if the element is

visible

is_enabled() boolean
Returns true if the element is

enabled

is_selected() boolean
Returns true if the checkbox or

radio button is selected

rental Location X,Y
Returns the X,Y location on the

render canvas Height, Width

size Height width
Returns the height and width of

the element

tag_name
tag_name

property

Returns the element's

tag_name

text item text
Returns the text associated

with the element

44

Interact with UI elements

45

Interact with
UI elements

•When we wish to manipulate a web element,
several aspects of the element can have an
impact:

• The existence of the element

• The visibility of the element

• Element activation

•Depending on the website, how the HTML
code was written, etc. there can be a disparity
as to whether or not a web element needs to be
displayed/activated before manipulating it.

46

Manipulating

Text Fields

•When typing into an editable text field, you usually want to

clear the text of the item first, then type the desired string

into the field.

•Example :

•element.clear()

•string_to_type = ‘ABC'

•element.send_keys(string_to_type)

47

Clicking on web elements

•Clicking on an element simulates a mouse click. This can be done on a radio button, link

or image; basically any place you can manually click with your mouse.

•Example :

•element.click()

•It is important to verify that the web element is actually clickable. You can use the method

element_to_be_clickable of style expected_condition to wait for it to become clickable.

48

Manipulation of checkboxes

•It's best to treat checkboxes differently than other clickable controls.

•Indeed each time you click on a checkbox, it toggles the state selected from true to false or from false to true.

•Before manipulating them, it is better to know the previous state and the desired state of the control.

•def set_check_box(element, want_checked):

•if want_checked and not element._is_selected():

•element.click()

•elif element.is_selected() and not want_checked:

•element.click()

49

Handling drop-down menus

•Drop-down menus (selection controls) are used by many

websites to allow users to select one of the options offered.

Some of these drop-down menus allow multiple list items to be

selected simultaneously.

•There are many ways to work with a select field's list. These

include options for selecting and deselecting single or multiple

items.

50

Handling

drop-

down

menus

•The Selenium API provides developers with a class that allows you to

manipulate drop-down menus. it's about the Select class

•from selenium.webdriver.support.select import Select

•select_category =

Select(driver.find_element_by_id('searchDropdownBox'))

•select_category.select_by_visible_text('English and foreign books')

•The constructor of the Select class takes an instantiated WebElement

as a parameter.

•The constructor will crash if this WebElement does not behave like a

select

51

Manipulating drop-down
menus: selection and
deselection methods

Property/Method arguments Description

click()

Search through the HTML

code to find a desired

element and click on it.

select_by_value() value Select by value

select_by_visible_text() text
Select all items that

display matching text

select_by_index() index
Select an element by its

index

deselect_all(() Deselect all items

deselect_by_index() index Unselect by index

deselect_by_value() value Unselect by value

deselect_by_visible_text() text
Deselect based on

visible text

52

Manipulating Drop-Down
Menus: Selection Control

MethodsProperty/Method Description

all_selected_options
Returns the list of all

selected items

first_selected_option
Returns the first

selected item

options
Returns the list of all

options in the list

53

Working with Modal Dialogs

A modal dialog opens on top of a browser window and does not allow access to the
underlying window until it has been processed. These dialog boxes are similar to user
prompts, but different enough to discuss separately.

All the code for the modal dialog is in the HTML that made it appear.

Therefore, manipulating the modal dialog is like finding its code in the calling page and
manipulating it.

54

Working

with

Modal

Dialogs:

Example

•Suppose we want to click the Proceed to Checkout button in this modal

dialog. The first step would be to determine the location of the code for the

modal dialog.

•In this example, the ID of the section representing the modal element is

layer_cart.

•modal = driver.find_element_by_id('layer_cart')

•The next task is to identify the element representing the button in the modal

dialog

•proceed_button =

modal.find_element_by_class_name(button_medium)

•proceed_button.click()

55

Interact

with

user

prompts

•User prompts are modal windows where the

user must interact with commands before they

can continue to interact with the browser itself.

The alert dialog is often used to make sure the

user is aware of some important information.

•They are generally not processed automatically.

Therefore, if your script tries to ignore the

prompt and continue sending commands to the

browser window, an unexpected alert open error

is thrown on the next action.

56

Interact

with

user

prompts

•The W3C defines three different alert-type dialog boxes:

• Alert

• confirm

• Prompt

•Each user prompt is associated with a user prompt message.

•Since alert dialogs are not part of the web page, they require

special treatment.

•WebDriver/Python has a set of methods that allow you to

control the alert dialog from your automation script. These

methods are common to all three user prompt dialog boxes.

57

Interact with user prompts

•First create a reference using a method of the WebDriver object called switch_to.

•alert = driver. switch_to. alert

•Get the text in the alert and compare to an expected

•msg_alert=alert.text

•assert “XYZ” = in msg_alert, "the xepxcted text not found"

•Alert dialogs can be closed in two ways.

•# press OK

•alert.accept()

•# press CANCEL, or the closing X

•alert.dismiss()

58

Timing mechanisms

59

Timing

mechanisms

Selenium WebDriver with Python has
several different wait mechanisms that
an automation engineer can use when
setting up synchronization for their
automation.

To usean explicit wait mechanismis
generally not the best approach for this,
but this method is commonly used by
many automation engineers.

60

A (bad) solution

•The following code should be recognized by almost anyone who has ever automated tests:

•import time

•..

•time.sleep(5)

• While it can be a good solution at times, this is not the case in general. This type of
waiting mechanism considers the worst-case response time. As this does not occur
frequently, a significant portion of this waiting time is wasted.

61

Implicit Expectations, Explicit Expectations

• Selenium with WebDriver has two main types of

wait mechanisms : implicit expectations and

explicit expectations.

62

Implicit

expectation

•An Implicit Wait in WebDriver is defined when the object

WebDriver is created for the first time.

•driver = webdriver.chrome()

•driver.implicitly_wait(10)

•Implicit wait will be in effect until WebDriver is disabled. This

mechanism allows a WebDriver to query the DOM for a certain

amount of time when it tries to find an element that is not found

immediately (default 0 sec).

•The code above tells the WebDriver to watch for any element to

appear for ten seconds, polling the DOM every millisecond.

•If the item appears during this time, the script continues to run.

63

Explicit wait

•Explicit wait times require the automation engineer to define exactly how long WebDriver should wait for a

particular element to appear, or a particular state of that element.

•In Python, these wait times are coded using the WebDriver method WebDriverWait(), in conjunction with a

ExpectedCondition. Expected conditions are defined for many common conditions that can occur and can be

accessed by including the module selenium.webdriver.supportas shown below :

•from selenium.webdriver.support.ui import WebDriverWait

•from selenium.webdriver.support import expected_conditions as EC

•This code provides the automation engineer with the possibility of using the predefined expected waiting times

that are available.

64

Explicit

wait:

example

•Calling the explicit wait can be done using the following code:

•from selenium.webdriver.support.ui import WebDriverWait

•from selenium.webdriver.support import expected_conditions as

EC

•from selenium.webdriver.common.by import By

•wait = WebDriverWait(driver, 10)

•element = wait.until(EC.element_to_be_clickable((By.ID,

'someID')))

•This code will wait for up to 10 seconds, checking every 500

milliseconds, for an element to be identified by a defined ID 'someID'.

If the web element is not found after 10 seconds, the code will raise a

TimeoutException. If the web element is found, a reference to it will

be placed in the variable 'element', and the script will continue.

65

Explicit expectation:
some possible
variations of

expected_condition

Property/Method

title_is

title_contains

presence_of_element_located / presence_of_all_elements_located

visibility_of

text_to_be_present_in_element

text_to_be_present_in_element_value

frame_to_be_available_and_switch_to_it

invisibility_of_element_located

element_to_be_clickable

staleness_of

element_to_be_selected / element_located_to_be_selected

element_selection_state_to_be / element_located_selection_state_to_be

alert_is_present

66

Change browser window context

67

Change window context

•Sometimes you have to change the current context of the
graphical interface you are testing. Several reasons can justify
this:

• Check the test result in another system or run a test step
in another application.

• The GUI of the application requires switching between
frames or windows.

• The need for frame change. By changing the context of a
particular frame, you will be able to find items within that
frame.

68

Change window context

Changing the
context of the

script can be done
in three ways:

By changing
browser instance

By changing
window or tab
within the same

browser

By changing frame
in a page

69

Open multiple webdrivers

•To open multiple browsers, multiple WebDriver objects can be

created. Each WebDriver object controls a browser.

•WebDriver objects can control the same type of web browser

(eg, Chrome, Firefox) or different types.

•Each browser is independently controlled by a WebDriver

object.

70

Change
the

context
with the

same
webdriver

•You can force the opening of a new window/tab with the

command:

•driver.execute_script("window.open()")

•The new window/tab will be managed by the same object

webdriver which opened it in this case.

•A web application can also open new tabs/windows on its

own

71

Change
the

context
with the

same
webdriver

•To switch between open tabs in a browser, one must first

know the list of all open tabs.

•This list is in the attribute window_handles of the

WebDriver object.

72

Change
the

context
with the

same
webdriver

•Could you do scroll through all tabs/windows using the

following code:

•for handle in driver.window_handles:

•driver.switch_to.window(handle)

•The safest way to determine which window is the currently

open window is to use the attribute driver.title

73

Change
the

context
with the

same
webdriver:

frames

•To switch between frames on a page:

•You can identify a frame with its ID in the DOM

•The command to change the context to this frame is:

•driver.switch_to.frame("foo")

•You can also identify a frame in the same way as a classic web

element.

•frm_message = driver.find_element_by_name('message')

•driver.switch_to.frame(frm_message)

•You can return to the parent page using:

•driver.switch_to.default_content()

74

75

ATTAFI YOUSRA

EXPERT EN TEST LOGICIEL

@ : ATTAFI.YOSRA@HOTMAIL.FR

LINKEDIN : Yousra ATTAFI

	Diapositive 1
	Diapositive 2 Levels of knowledge of learning objectives
	Diapositive 3 Logging and reporting mechanisms
	Diapositive 4 Logs and reports
	Diapositive 5 Logs and reports
	Diapositive 6 Reporting: distribution
	Diapositive 7 Reporting: content
	Diapositive 8 Test execution layer
	Diapositive 9 pytest
	Diapositive 10 pytest
	Diapositive 11 Python logs
	Diapositive 12 Assertion in Python
	Diapositive 13 Reporting and logs: Selenium WD test case steps
	Diapositive 14 First steps
	Diapositive 15 Start a test automation session
	Diapositive 16 Start a test automation session
	Diapositive 17 Navigate to a URL
	Diapositive 18 Navigating and Refreshing Pages
	Diapositive 19 Closing the browser
	Diapositive 20 Close a browser window/tab
	Diapositive 21 Maximize / minimize windows
	Diapositive 22 Take screenshots of web pages
	Diapositive 23 Take screenshots of web pages
	Diapositive 24 Why take screenshots?
	Diapositive 25 When to take screenshots?
	Diapositive 26 Scope of screenshots
	Diapositive 27 Take a screenshot
	Diapositive 28 Locate GUI elements
	Diapositive 29 DOM
	Diapositive 30 DOM
	Diapositive 31 Introduction
	Diapositive 32 find_element_, find_elements_
	Diapositive 33 Localization by HTML methods: By ID
	Diapositive 34 Localization by HTML methods: By class
	Diapositive 35 Localization by HTML methods: By tag name
	Diapositive 36 Localization by HTML methods: By link text
	Diapositive 37 Localization by XPath Methods
	Diapositive 38 Localization by XPath Methods
	Diapositive 39 Localization by CSS selector
	Diapositive 40 Location by predefined conditions
	Diapositive 41 Location by predefined conditions
	Diapositive 42 Get status of GUI elements
	Diapositive 43 Get status of GUI elements
	Diapositive 44 Common properties and access methods
	Diapositive 45 Interact with UI elements
	Diapositive 46 Interact with UI elements
	Diapositive 47 Manipulating Text Fields
	Diapositive 48 Clicking on web elements
	Diapositive 49 Manipulation of checkboxes
	Diapositive 50 Handling drop-down menus
	Diapositive 51 Handling drop-down menus
	Diapositive 52 Manipulating drop-down menus: selection and deselection methods
	Diapositive 53 Manipulating Drop-Down Menus: Selection Control Methods
	Diapositive 54 Working with Modal Dialogs
	Diapositive 55 Working with Modal Dialogs: Example
	Diapositive 56 Interact with user prompts
	Diapositive 57 Interact with user prompts
	Diapositive 58 Interact with user prompts
	Diapositive 59 Timing mechanisms
	Diapositive 60 Timing mechanisms
	Diapositive 61 A (bad) solution
	Diapositive 62 Implicit Expectations, Explicit Expectations
	Diapositive 63 Implicit expectation
	Diapositive 64 Explicit wait
	Diapositive 65 Explicit wait: example
	Diapositive 66 Explicit expectation: some possible variations of expected_condition
	Diapositive 67 Change browser window context
	Diapositive 68 Change window context
	Diapositive 69 Change window context
	Diapositive 70 Open multiple webdrivers
	Diapositive 71 Change the context with the same webdriver
	Diapositive 72 Change the context with the same webdriver
	Diapositive 73 Change the context with the same webdriver
	Diapositive 74 Change the context with the same webdriver: frames
	Diapositive 75

