
Certified Selenium Tester

Part 4
Preparing Maintainable Test Scripts

1

ATTAFI YOUSRA

1

Knowledge levels of learning objectives

2

K1:
remember

01
K2:
understand

02
K3: apply

03
K4: analyze

04

Maintainability of test scripts

3
3

Maintainability of test scripts

•An automation tool does not have human intelligence. Scripts do not benefit
from any intuition.

•This can be overcome by adding elements of context and of plausibility testing
when programming automated scripts.

•Automation is a complex activity for two main reasons:

• It must integrate intelligence into the scripts so that they best simulate
a human tester.

• It must manage an ever-increasing complexity of SUTs

•But the more complexity we add to our automation, the more predictable risks
there are of automation failures.

4

Good practices

•Managing web item selectors

•When testing a browser, be sure not to use absolute paths when locating web items. Relative paths
tend to change less often.

•Smart chaining

•The execution of scripts must be chained regardless of the result of executing a script whether it fails
or succeeds.

•If we can always run the next test, we can always run the whole suite, regardless of the number of
failed tests during the execution.

5

Good practices

•Code sharing

•Any code that automation needs to call repeatedly can be created as a function. You can create
libraries of functions that can be included in your code to provide toolkits for the whole team.

•Variable naming

•Define global names that make sense.

•This makes the code more readable, which has the side effect of making the automation code easier
to maintain.

•It takes a few extra seconds to find suitable names, but it can save hours of work afterwards.

6

Good practices

•Use of comments

•Comment. Lots of comments. Meaningful comments.

•Smart logging

•Dwell-managed logs from the startwill make automation more scalable.

•Accurate logs can reduce problem diagnosis time.

•Consider the needs of your organization. If your SUT is a critical system, your logs must be complete
enough to be audited.

7

Test
Accounts

and
Fixtures

•Automation needs to have certainty about
the data used in automation.

•It is essential to create user accounts and
fixtures that are specifically intended for
automation.

•These accounts and associated fixtures should
not be tied to any particular person. Generic
accounts that mimic real accounts are much
better at isolating them from changes. Having
enough different accounts ensures that tests do
not interfere with data from other tests.

8

File naming

•The files

•Save files in well-organized folders. Consider creating a folder with a timestamp in the
name and placing all the files for a run there. If multiple machines are running the
automation, or if you are testing in different environments, you can add the workstation
name or environment names to the folder names.

•Place them in directories that can be destroyed without damage.

9

ONE OF THE IMPORTANT
PRINCIPLES OF SETTING UP A

MAINTAINABLE TEST
AUTOMATION ARCHITECTURE

IS TO DIVIDE IT INTO
LAYERS.

WHEREVER POSSIBLE,
SCRIPTING COMPLEXITY

SHOULD BE MOVED TO THE
AUTOMATION

ARCHITECTURE/AUTOMATION
FRAMEWORK LEVEL.

WE WILL DISCUSS THIS
SUBJECT A LITTLE MORE IN

DETAIL IN THIS SECTION
THROUGH THE FUNCTIONS

WRAPPER AND DESIGN
PATTERNS OBJECT PAGE.

10

Wrappers Objects and Functions Page

11
11

The test

abstraction

Page Objects and Wrapper functions are part of this layer by
abstracting the GUI from the SUT.

One of the layers offered by the ISTQB is the Abstraction
layer of tests; this layer provides the interface between the

test case business logic and the concrete needs for
steering the SUT.

One of the important principles of setting up a maintainable
test automation architecture is to divide it into layers.

12

Principle of Wrapper functions

•Intelligence is put into aggregate functions rather than in each script individually.

•By moving the intelligence of the test outside of the scripts themselves, the code

becomes easier to maintain and more scalable.

•If the code fails, the correction can be achieved in a single corrective action.

13

Using Wrappers

•An interaction with a web element by Selenium can be designed in these few steps:

• Make sure the element on the interface is ready to use

• Temporize if necessary

• If the element is still not usable, log the error and close the script execution

• Manipulate element

• Verify that the control behaves as expected after handling it.

• In case of problem, write a useful log message

14

Objects page

15

Principle of the Page Objects design pattern

•A Page Object represents an area of the web application interface that your test will interact with. There are
several reasons for using this mechanism:

• It creates reusable code

• It reduces the amount of duplicate code.

• It encapsulates all operations on the SUT GUI in a single layer.

• It clearly separates the business and technical parts of test automation design.

• It reduces code maintenance costs and efforts

• It gives a single entry point in the code to correct all the scripts concerned in case of change

16

Object page: definition

•Page Object designates a class, a module or a set of functions which contains
interface to a form, page, or page fragment of the SUT that you want to control.

•The Page Object Pattern is used to manage business actions that are used as test
steps in the test execution layer , they are therefore part of the test adaptation
layer.

•Page Object Pattern is thus an application of the approach called Keyword Driven
Testing, which allows an automation project to reduce maintenance efforts.

17

Design rules for a Page Object

• Page Objects must not contain assertions about the business logic or

checkpoints.

• All assertions and verifications techniques concerning the graphical

interface must be carried out in the Page Objects.

• All wait mechanisms should be encapsulated in Page Objects.

• A Page Object must contain calls to Selenium functions, and only it.

18

Page
Objects

•A Page Object does not need to span the

entire page or form. He can control a section or

another specific part of it.

•In a test automation architecture, Page Objects

encapsulate calls to Selenium WebDriver

methods, so that the test execution layer

deals only with the business level.

•There is no import or use of the Selenium

library in the test execution layer.

19

Keyword-driven testing

(Keyword Driven Testing)

20

Keyword-driven testing(KDT)

• A natural extension of the Page Object Pattern

• Keywords are abstract, business-oriented terms that functionally describe
a task that the SUT must perform

• Focuses on the question “what do I test” rather than “how do I test it”

• The KDT emulates the way a hand tester works

• Test analysts define keywords based on what they need

• Automation engineers create the functionality behind the keyword and the
framework to run the test

21

ISTQB
Definition

A scripting technique that uses data
files to contain both test data and
expected results, but also keywords.

Keywords are business actions or
steps in a test case. These are exactly
the same as those in the first column
of a manual test case.

These keywords are interpreted by
supporting scripts specific that are
called by the control script of the
test.

22

Keyword-driven testing

•The keyword (KeyWord, ActionWord) is an abstract business action or a step in an abstract test case.

•Like a manual test, a KDT script is generally summarized in three columns

• The task to be performed (the keyword)

• The data(s) to be taken into account

• The expected result

•A KDT scriptdoes not contain specific low-level actions to perform on the SUT.

•The exact concrete actions on the SUT are hidden in the implementation of the keywords.

23

Keyword-driven testing: benefits

• The design of the test case is decoupled from the implementation of the SUT.

• The test execution, test abstraction and test definition layers are clearly separated.

• An almost perfect division of labour:

• Test analysts design test cases and write scripts using keywords, data, and expected results.

• Technical test analysts implement the keywords and execution framework needed to run the
tests.

• Keywords are reusable in different test cases.

• Test cases are more readable

24

Keyword-driven testing: benefits

• Less redundancy.

• Reduced maintenance costs and efforts.

• A manual tester can run the test manually directly from the automated script.

• Scripts using keywords can be written long before the SUT is available for testing

• Automation can be ready earlier and used for functional testing and not just regression testing.

• A small number of test automation engineers can work with an unlimited number of test analysts, which facilitates
the extension of automation.

• Because scripts are separate from the implementation level, different tools can be used interchangeably.

25

Things to consider

• More precise keywords allow for more specific scenarios, but at the expense of script
maintenance complexity

• Allowing access to low-level actions increases flexibility but, when tied to the GUI, test
maintenance increases

• Aggregate keywords can simplify initial development but complicate maintenance

• Initial keyword design is important, but eventually new and different keywords will be
needed that involve business logic and automation functionality for execution

26

Implementation of the KDT

•Top-down approach

•Write test case steps like you would write manual tests, then implement them in your tool

•These steps can be written by test analysts

•More profitable when many keywords have already been implemented or when test scripts are updated

•Bottom up approach

•Record a script, then re-adapt it to meet the KDT architecture

•Usually used at the start of test automation

27

KDT Tools

• Cucumber

• Robot Framework

• Katalon Studio

• Harmony

• HPE Unified Functional Testing

•Keyword-driven architecture can be implemented in many programming

languages

28

Acronyms

•API: Application Programming Interface

•CERN: European Council for Nuclear Research

•CI: Continuous Integration

•CSS: Cascading Style Sheets

•DOM: Document Object Model

•GUI: Graphical User Interface

•HTTP: Hyper Text Transfer Protocol

•ISTQB: International Software Testing Qualifications
Board

•KDT: Keyword Driven Testing

29

Acronyms

•REST: Representational State Transfer

•ROI: Return on Investment

•SDLC: Software Development Life Cycle

•SOAP: Simple Object Access Protocol

•SUT: System/Software Under Test

•TAA: Test Automation Architecture

•TAE: Test Automation Engineer

•TAS: Test Automation Solution

•TCP: Transmission Control Protocol

•UI: User Interface

•W3C: World Wide Web Consortium

30

Glossary

•class attribute: HTML attribute that points to a

class in a CSS style sheet. It can also be used by a

JavaScript to make changes to HTML elements

with a specified class

•comparator: A tool to automate the comparison

of expected results against actual results

•css selector: Selectors are templates that target

the HTML elements you want to style

•Document Object Model (DOM): Application

programming interface that treats an HTML or

XML document as a tree structure in which each

node is an object representing a part of the

document

31

Glossary

•fixture: a test fixture is a fictional object or
environment used to constantly test an item,
device or piece of software

•framework: Provides an environment to run
automated test scripts; including tools, libraries and
fixtures

•function: A Python function is a group of
reusable statements that perform a specific task.

•hook: An interface that is introduced into a
system that is created primarily to provide better
testability to that system

•HTML (HyperText Markup Language): The
standard markup language for creating web pages
and web applications

32

Glossary

•ID: Attribute that specifies a unique identification
string for an HTML element. The value must be
unique within the HTML document

•iframe: An HTML inline frame, used to embed
another document in an HTML document

•modal dialog: A screen or box that forces the
user to interact with it before they can access the
underlying screen

•Object Pattern page: A test automation model
that requires technical logic and business logic to
be processed at different levels

•pesticide paradox: A phenomenon in which
repeating the same test several times leads to
finding fewer defects

33

Glossary

•persona: A user profile created to represent a
user type that interacts with the system in a
standard way

•pytest: A Python testing framework

•tags: HTML elements are delimited by tags,
written using brackets <>

•technical debt: Involves the additional cost of
redesign caused by choosing to ignore bad
designs or short-lived implementations

•WebDriver: The interface in which Selenium
tests are written. Different browsers can be
controlled through different Java classes, for
example, ChromeDriver, FirefoxDriver, etc.

34

Glossary

•wrapper: A function in a software library

whose primary purpose is to call another

function, often adding or enhancing

functionality while hiding complexity

•XML (eXtensible Markup Language): A

markup language that defines a set of rules for

encoding documents in both human and

machine readable format

•XPath (XML Path Language): A query

language to select nodes from an XML

document

35

36

ATTAFI YOUSRA

EXPERT EN TEST LOGICIEL

@ : ATTAFI.YOSRA@HOTMAIL.FR

LINKEDIN : Yousra ATTAFI

	Diapositive 1
	Diapositive 2 Knowledge levels of learning objectives
	Diapositive 3 Maintainability of test scripts
	Diapositive 4 Maintainability of test scripts
	Diapositive 5 Good practices
	Diapositive 6 Good practices
	Diapositive 7 Good practices
	Diapositive 8 Test Accounts and Fixtures
	Diapositive 9 File naming
	Diapositive 10
	Diapositive 11 Wrappers Objects and Functions Page
	Diapositive 12 The test abstraction
	Diapositive 13 Principle of Wrapper functions
	Diapositive 14 Using Wrappers
	Diapositive 15 Objects page
	Diapositive 16 Principle of the Page Objects design pattern
	Diapositive 17 Object page: definition
	Diapositive 18 Design rules for a Page Object
	Diapositive 19 Page Objects
	Diapositive 20 Keyword-driven testing (Keyword Driven Testing)
	Diapositive 21 Keyword-driven testing(KDT)
	Diapositive 22 ISTQB Definition
	Diapositive 23 Keyword-driven testing
	Diapositive 24 Keyword-driven testing: benefits
	Diapositive 25 Keyword-driven testing: benefits
	Diapositive 26 Things to consider
	Diapositive 27 Implementation of the KDT
	Diapositive 28 KDT Tools
	Diapositive 29 Acronyms
	Diapositive 30 Acronyms
	Diapositive 31 Glossary
	Diapositive 32 Glossary
	Diapositive 33 Glossary
	Diapositive 34 Glossary
	Diapositive 35 Glossary
	Diapositive 36

