
1

Test Automation of
UI Tests using Selenium
and Appium

2

AUTHOR:

Georg Hansbauer

Georg Hansbauer is co-founder and Managing Director of Testbirds. He is
responsible for the development of services and IT infrastructure as well
as finance and quality assurance at Testbirds. Georg gathered extensive
experience in the field of enterprise testing – from automated tests for
complete IT service desks to load testing – and has been in charge of various
IT projects for international corporations. He graduated in the elite network
Master‘s program “Finance and Information Management“ at the University
of Augsburg and the Technical University of Munich in Germany and has a
Bachelor’s degree in Business Informatics.

CONTENT

1. 	 New Platforms and Processes Require Rethinking Quality Assurance - Seite 3

2. 	 Testautomatisierung - Page 4	

	 2.1. Areas of application - Page 4

	 2.2. API Examples: Selenium and Appium - Page 5

	 2.3. Test Suite Examples: Jubula - Page 7

3.	 Test Environments for Automated Tests - Page 8	
	 3.1. The Challenge of Platform Diversity - Page 8	
	 3.2. Cloud Based Testing with Device Cloud - Page 9

4. 	 Practical Examples - Page 13	
	 4.1. Local Testing with Selenium - Page 13

	 4.2. Test Automation with Device Cloud - Page 14

5. 	 Summary - Page 15

6. 	 Glossary - Page 16

3

1. New Platforms and Processes Require
Rethinking Quality Assurance
Just a few years ago, websites were only tested over desktop devices and a handful of browsers. Nowadays,
Quality Assurance is facing completely new challenges due to the enormous variety of mobile and smart
devices in the market. Test automation has therefore now become a crucial factor for quality control,
although most companies are still merely scratching its surface, especially when it comes to mobile
applications.

This whitepaper provides an entry into the world of test automation and investigates its challenges through
the use of practical use cases and specific fields of application. It provides information for decision makers,
who are considering investing in test automation, while also granting insights for developers and users
looking to increase their knowledge in this area.

The classic waterfall model with its stiff development and testing phases is increasingly replaced by agile
methods¹. Short iterations, so called sprints, are causing short testing phases with a high rerun frequency.
Software is being updated in small cycles due to approaches like Continuous Integration4. In parallel to
development, testing takes also place in close intervals (so called Continuous Testing) and challenges
internal as well as external teams.

Furthermore, costs could rise since not only new, but also existing components and features should be
continuously tested. A combination of manual and automated tests is therefore an ideal way to overcome
this challenge. While new features can easily and quickly be tested manually, test automation is a cheaper
and more resource effective option for testing existing core functions in the long term. Recurring
regression tests7, for example, are therefore ideal for test automation.

Finally, an important prerequisite for agile development is a smooth collaboration between software
developers and IT companies, which is summed up by the buzzword DevOps. A central idea to DevOps is
to automate deployment and testing process to make this working relationship much easier.

Test automation is therefore becoming an essential element of agile software development. But what are
the concrete applications when we look at it in practice?

This whitepaper offers explanations to the following questions:

1. How can developers reduce manual testing efforts with UI automation using Selenium and Appium?
2. How can QA Managers integrate automated tests into their existing development cycles?
3. What does the corresponding testing infrastructure look like?

4

2. 2. Test Automation

2.1. Areas of application

A question that is often asked is whether to perform manual or automated testing. The first step is to
determine whether the manual alternative is more economical. Another aspect to consider is that tight
project deadlines often create time restrictions, which makes test automation appear to be the ideal
solution. Nevertheless, test automation is no universal solution. In contrast to manual testing, the entry
barrier for test automation is higher. Creating the necessary test cases is complex and therefore cost-
intensive. QA teams need to have the required expertise to perform test automation, otherwise external
consultation is a must. After initial setup, most of the work is purely maintenance and extension of existing
testing scripts, which is comparatively inexpensive. Automated tests can therefore be effectively integrated
as a set component of the development process.

Another advantage of test automation is the reduction of human error. This method is especially
applicable to critical core functions such as login, registration, booking and purchasing processes, as those
components rarely ever change.

Manual testing on the other hand offers the possibility to gain subjective user impressions on how they
rate the usability, the harmonic design or the logical structure of a digital product. This information is
essential when looking at design and for this reason is particularly important during early development
stages and the final version of the product.

Quick feedback which is possible through test automation is an immense help for developers, especially in
an agile environment with its short development cycles. This is due to the possibility to test immediately
after changes in the code. With Continuous Integration systems4 this process can be automated in an
efficient way. The test results are thereupon transparent and available for everyone involved within a short
span of time.

Determining which testing method is feasible and cost efficient needs to happen on a case-by-case basis.
The more often a test is executed the more profitable it can be to create a testing script, which can then be
adjusted if the code changes. Generelly, both testing methods make sense. However, the question is which
testing method is more suitable for which components.

›› Tests are performed infrequently
›› Software constantly and largely changes (high
maintenance of the test script)

›› Early development stage of software
›› Lacking knowledge concerning test automation
processes

›› The test scope needs to be operated by humans
(behavior cannot be simulated through automated
test cases)

›› Exploratory tests
»» Usability tests

›› High frequency of regression tests
›› Recurring high time requirements when testing
manually

›› Short release cycles
›› System environment is also a part of the test scope
(Live Monitoring)

›› Significantly more cost efficient
›› Scaling, among other on additional test
environments

›› Integration of tests directly into the development
process (Continuous Integration)

Manual Automated

Figure 1: Application scenarios for manual and automated testing

5

2.2.	 API Examples: Selenium and Appium

Introduction to Selenium

The creation of automated tests requires a specific framework. In this section, two of the most common
frameworks are presented: Selenium8 for browser based tests in desktop environments and Appium2 for
mobile browsers and apps.

Selenium is a framework for automating website and mobile apps tests. This is done by simulating user
activities and by taking remote control of browsers. Actions like opening a page, scrolling, clicking on single
elements or text fields are all possible.

In this manner Selenium offers countless possibilities to automate the process of a website test. These
commands can be used in several different programming languages. This is how a test script emerges to
check a website’s functions: it performs all the actions one after another and evaluates results.

A big advantage of Selenium is its compatibility with common systems, as this is an important requirement
for testing desktop devices.

›› Java
›› PHP
›› Python
›› JavaScript
›› and many more

›› Windows
›› Linux
›› OS X
›› Android
›› iOS

›› Chrome
›› Firefox
›› Internet Explorer
(from Version 7)

›› Safari
›› and many more

Figure 2: Compatibility of Selenium

Client APIs Platforms Browser

http://www.seleniumhq.org/about/platforms.jsp

6

WebDriver
Protokoll

Local Testing

The broad support of different browsers and platforms is made possible by Selenium’s architecture:

Figure 3: Local Testing with Selenium by Remotely Controlling Browsers

CLIENT API DRIVERS

JAVA
PHP
PYTHON
...

Chrome Driver
IE Driver
...

Figure 3 shows the two essential components of Selenium:

›› Selenium WebDriver: A tool for automating web application testing through W3C standardized
interface, which receives commands via HTTP. There are browser and platform specific implementations
(ChromeDriver, IE Driver, ...), which are performed on the same system as the test browser. The
corresponding WebDriver implementation starts the browser and performs the desired actions.

›› Selenium Client API: The interface for the most popular programming languages are addressed by
the test scripts. The Client API translates those calls into WebDriver commands, which are sent to the
WebDriver and performed on the browser.

Selenium Grid

The Selenium Grid allows the performance of test scripts on other systems than your own. In the process,
a hub and multiple nodes are merged into one grid. This is what it looks like:

Figure 4: Testing in a Selenium Grid on various systems

WebDriver
Protokoll

NODE 1

NODE 2

CLIENT API

JAVA
PHP
PYTHON
...

HUB

Chrome Driver
IE Driver

...

Chrome Driver
Safari Driver

...

7

The nodes are located on various machines with different possible operating systems (Windows, Linux and
OS X). They address the WebDrivers that are installed there, which once again perform the commands in
the particular browsers.

The Hub and Nodes are connected through the network. In this scenario, testing scripts communicate only
with the hub, which then shares the commands with the node that is currently being used. The selection
of systems and browsers, on which tests should take place, happens through so called DesiredCapabilities
(see Chapter 4, page 13).

The Selenium Grid is especially suitable for advanced application scenarios. It provides the advantage of
testing on more machines than are available internally. This is particularly beneficial when it comes to
Continuous Integration processes, in which tests are started by, for example, Jenkins.

Appium

Appium is an extension of Selenium for testing mobile apps and websites on Android and iOS devices.
It enables the performance of Selenium tests in mobile browsers and the testing of native apps. Appium
enhances the functionality of the WebDriver to make important actions on mobile devices such as multi
touch capabilities or pushing physical buttons possible. Appium be easily integrated into an existing
Selenium Grid or used as an autonomous framework.

2.3. Test Suite Example: Jubula

One simple and accessible alternative to test case creation through the use of a programming language is
Jubula, an open source tool created by the Eclipse Foundation.

Jubula enables the testing of websites and applications without any programming knowledge. This is
achieved by creating test cases in a graphic user interface. First, the testing process needs to be defined
and is afterwards automated with single testing steps acquired from an extensive library.

Figure 5: Jubula’s User Interface

8

When creating the test, abstract names are used for the needed GUI elements on the website, such as
“Username entry field”. If a functional prototype of the website exists, those abstract names are linked to
the actual technical elements. Therefore, test creation with Jubula can be performed independently in the
development stage of applications and websites.

There is also a reporting tool included that collects test results, presents them in an appealing manner and
if an error is encountered, automatically generates screenshots for documentation.

Jubula is based on a client-server architecture that also allows distributed testing. By doing so, test
execution can easily be bound to a Continuous Integration System.

Other than websites, desktop applications can also be tested with Jubula, for example based on Swing,
SWT or JavaFX toolkits. Various platforms such as Windows and Linux/Unix are also supported.

3. Test Environments for Automated Tests

3.1. The Challenge of Platform Diversity

Applications today need to run flawlessly on desktop devices as well as on mobile platforms. In addition,
there is software, such as Java and Flash, that is needed to execute certain applications. The combination
of possibilities of different operating systems and software programs are seemingly never ending. For this
reason, the creation of corresponding test environments is costly and takes a lot of time.

Virtual machines12 (VMs) can help reduce these expenses. When creating test environments10 for
automated tests, which are conducted by virtual machines, the configuration and maintenance expenses
are only slightly lower than when using physical environments. Additionally, for manual tests, virtual
machines are being used more often as no QA department can cover all the various devices on the market
with their own device pool any longer.

The biggest platform variety – and therefore also the biggest challenge when it comes to testing - is found
with mobile applications. Especially the market for Android devices is enormously fragmented due to
the diversity of manufacturers and operating system versions. iOS apps should run smoothly on various
devices and with several OS versions as well.

This creates a situation where test environments for automated testing need to cover an ever-growing
number of device, browser and operating system combinations. Thanks to short development cycles, they
also need to be available as quickly as possible. In addition, it’s useful to test various environments in
parallel with each other as this minimizes the duration of single test phases.

9

When using TestChameleonTM you can choose the number of virtual machines and the necessary
combinations of operating systems, browsers and other software with the help of a web configurator.
Various software packages and plugins, like Java and Flash, as well as their different versions, can also
be selected.

TestChameleonTM has been developed to specifically meet the needs of modern Quality Assurance. Manual
tests, such as the reproduction of bugs or usability problems can be performed through the HTML5
frontend.

To support automation projects, APIs for Selenium and Appium are available. Once these have been
integrated, the test environment can be defined. In doing so, TestChameleonTM serves as a management
tool for automated tests and can be linked to Continuous Integration Systems such as Jenkins1.

All test environments are created from scratch to ensure a maximum level of security. There is also no
reuse of systems that have been previously used. After the test, the environment is completely deleted.
It is also possible to connect local networks through a standardized IPSec VPN solution.

A Solution to Platform Diversity

Overview of TestChameleonTM

›› Virtual environment creation tool, SaaS solution in the cloud
›› Around 2.5 million possible combinations of devices, operating systems and software packages
›› Ability to connect internal test servers
›› High scalability and individual configurations
›› Suitable for automated and manual testing
›› Server hosting only takes place in Germany

3.2. Cloudtesting with TestChameleonTM

The Software-as-a-Service9 solution TestChameleonTM is a part of Testbirds’ Cloud Solutions. It creates an
enormous number of virtual machines for manual and automated testing in a matter of minutes. This
includes desktop based systems as well as mobile devices and a variety of other software components.
Other than the execution of manual tests, TestChameleonTM lets you perform automated test cases in
Selenium or Appium with the help of a suitable API. In contrast to testing in physical environments, the
costs for maintenance and the resources for creating the test environment are reduced to a minimum.

10

Figure 6: TestChameleonTM Architecture

In most cases, TestChameleonTM is used as Software-as-a-Service solution. There is also the possibility to
install it in on-premises in companies’ data centres.

Tests can be created either manually by using the web frontend or automated via APIs. The entire
management happens by using a controller. The web interface functions as a relatively simple frontend.
To raise capacities, further VM hosts are added, whose allocation happens by using a corresponding
algorithm. When installing TestChameleonTM on-premise, there are several drivers for virtualization solution
such as Libvirt/KVM or VMware.

Architecture and Technology

11

The following section of this whitepaper shows how TestChameleonTM can be used for manual testing. By
using the web frontend, individual VMs can be created. By creating an account at nest.testbirds.com it is
possible to create VMs and control them via a web interface.

With just a few clicks a single individual VM can be created. In doing so, the operating system, browser and
further software needs to be selected (see figure 7).

The environment is then available within just a few minutes. It can be accessed directly in the browser via
WebVNC (clean JavaScript, no plugin installation) or by using an external VNC Client (see figure 8).

Testing Process and Execution

Figure 7: Configurator for VM Creation

https://nest.testbirds.com

12

Figure 8: Access to the Test Environment via WebVNC

Figure 9: Toolbar for Desktop Environments

Depending on the operating system and device type, there is also a broad range of functions available
through a tool bar.

For desktop environments those functions are:

›› Restart and Pause the environment
›› Upload local files
›› Share the browser clipboard with the test environment
›› Resolution adjustment
›› Fullscreen mode
›› Save a screenshot

13

Figure 10: Toolbar for Mobile Devices

4. Practical Examples

4.1. Local Testing with Selenium

After a brief introduction into automated testing with Selenium, this section will present a concrete
example of automated testing through displaying how test cases can be migrated from a local browser
through to TestChameleonTM. It is possible to increase the coverage of various platforms and browsers
without major changes to the testing scripts taking place.

All examples of code that are presented in this whitepaper can be found on Github. This code can be tested
on a local browser without having access to a dedicated TestChameleonTM account. The object being tested
is a web application that has been created for demonstration purposes.

The following excerpts of code show the structure of a Selenium test script in Java. They can be translated
into other programming languages without too much effort. To start testing, a so-called WebDriver is
needed. When testing on a locally installed Chrome browser, the WebDriver can be created in the following
manner:

The object driver is now being used to remotely control the browser. As a second step, it is often useful to
open a URL in said browser:

WebDriver driver = new ChromeDriver();

driver.get("https://demo.testchameleon.com");

For mobile devices the following functions are
available:

›› App installation
›› Fullscreen mode
›› Save a screenshot in original resolution
›› Device rotation (portrait and landscape)
›› Activation of single hardware buttons such
as the home button

14

The result is directly visible: A browser window opens and the designated page begins to load. At the begin-
ning, certain elements are usually selected that should be tested:

Further options to pick specific elements are among others: By.tagName, By.cssSelector and
By.xpath.

This selection allows interaction with said elements. For example, it is possible to perform mouse clicks and
key board actions with:

A full test of a login form could look like this:

Additionally, there are enhanced WebDriver interfaces available for Appium such as AndroidDriver.

WebElement button = driver.findElement(By.id("submit"));
WebElement input = driver.findElement(By.id("username"));
List<WebElement> es = driver.findElements(By.className("user-profile"));

driver.get(URL + "/login.html");
driver.findElement(By.id("username")).sendKeys("username");
driver.findElement(By.id("password")).sendKeys("password");
driver.findElement(By.id("submit")).click();
Assert.assertThat(driver.getCurrentURL(), endsWith("/dashboard.html"));

button.click();

input.sendKeys("username");

4.2. Automated Testing with TestChameleonTM

TestChameleonTM provides a Selenium Grid, which enables the same interaction as with a grid created by
oneself. The only difference is that the existing infrastructure automatically creates virtual machines with
the desired configurations in the background, on which the test is performed.

In the grid, and in the background of TestChameleonTM, WebDrivers can be requested with DesiredCapabilites.
By doing so, it is possible to define the system that should be tested in arbitrary accuracy.
DesiredCapabilities look as follows:

DesiredCapabilities dc1 = DesiredCapabilities.chrome();
DesiredCapabilities dc2 = DesiredCapabilities.firefox();
dc2.setPlatform(Platform.WIN);
dc2.setJavaScriptEnabled(true);
...

15

5. Summary

Due to an increase in agile development, a fast, efficient and extensive Quality Assurance process is a
crucial factor for the success of software. Therefore, it is important to continuously test both existing
components as well as new features, which can quickly amount to a high level of expenditure. For this
reason, a combination of manual as well as automated testing is often recommended. While new features
are easier and faster to test manually, automation is a resource and cost saving alternative in the long
term.

Although the setup for automated testing processes and the creation of the necessary scripts initially takes
a huge amount of effort, this approach is still worthwhile, particularly when looking at regression testing
core functions. Selenium for desktop applications and Appium for mobile browsers and native apps offer
the options to test all components and functions accordingly.

Just like in a manual testing environment, the increasing variety of device, software and operating system
combinations is a serious challenge, even when looking at automated testing. As previously proven, the
SaaS solution TestChameleonTM grants the ability to simultaneously test a system on a huge variety of
virtual machines via existing frameworks such as Selenium or Appium.

While practical cases for getting started with Selenium are available on Github, the additional usage of
virtual machines with TestChameleonTM can also be tested for free in a 30-day trial after registering to
Testbirds’ platform.

Feel free to contact us for further questions or remarks concerning the content of this whitepaper.
We are happy to get in touch with you via e-mail info@testbirds.com or via phone +44 203 129 5012.

A full list of such DesiredCapabilities can be found here:
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities

After the DesiredCapabilities are defined, the Hub requests a RemoteWebDriver that matches those exact
requirements:

In the background, TestChameleonTM starts a virtual machine that satisfies the exact requirements desired.
Usually, within only a few minutes, a RemoteWebDriver is then accessible for interaction.

Further information and code examples can be found in the TestChameleonTM documentary:
https://confluence.testbirds.com/display/TED

RemoteWebDriver driver = new RemoteWebDriver(HUB_URL, dc2);

TestChameleonTM 30 Days Demo

https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://confluence.testbirds.com/display/TED
https://nest.testbirds.com

16

6.	 Glossary

1. Agile Software Development
	 » �The classic waterfall model with rigid development and testing phases is more frequently being

replaced with agile methods. Short iterations, often called sprints, lead to frequent and short testing
phases.

2. Appium
	 » �Appium is an extension of selenium designed for testing mobile apps and websites on Android and

iOS. It enables to perform Selenium tests in mobile browers as well as the testing of native apps.

3. CI Systems
	 » �These systems are designed to support Continuous Integration. This includes for example Jenkins,

Cruise Control, TeamCity, Bamboo and Gitlab CI.

4. Continuous Integration
	 » �The continuous rebuilding and automated testing of software is central to this approach. In parallel to

development, testing also takes places on a regular basis, (also known as Continuous Testing). Results
are accessible to all parties involved.

5. DevOps
	 » �DevOps describes the collaboration between software developers (Development) and IT businesses

(Operations).

6. Jubula
	 » �With this test suite, tests can be created without any programming knowledge. Jubula is an alternative

to tools such as Selenium or Appium.

7. Regression Test
	 » �After a bug test, QA managers use regression tests to make sure that the bug removal process did not

interfere with other functioning components in other parts of the system.

8. Selenium
	 » �Selenium is a framework to automate tests of websites and mobile apps. It simulates user activities

and therefore remotely controls browsers.

9. Software-as-a-Service (SaaS)
	 » �Software-as-a-Service refers to applications that exist in the cloud. The client can access software on-

line and does not have to install it locally.

10. Test Environment
	 » �This is the environment in which software is tested. With TestChameleonTM this environment is located

in the cloud.

11. UI Test
	 » �A UI test checks the User Interface. As this tends to be time consuming, these kinds of tests are often

automated when possible.

12. VM
	 » �A VM, short for virtual machine, enables the usage of devices, operating systems, browsers and other

software in a virtual environment instead on a purely physical basis.

17

Testbirds specialises in the testing of software such as apps, websites and Internet of
Things applications by using innovative technologies and solutions. The testing provider
investigates software for user-friendliness and functionality issues. With over 300,000
registered testers located in 193 countries, Testbirds is one of the world’s leading crowd
testing providers. The company also utilises cloud based technologies to support
customers in optimising their digital products. The combination of the two testing
methods delivers a unique portfolio that takes the quality of software to the next level.

Testbirds was founded in 2011 by Philipp Benkler, Georg Hansbauer and Markus Steinhauser.
Today, the company has over 100 employees. Other than its headquarter in Munich,
there are now offices in Amsterdam, London and Stockholm, franchises in Hungary and
Russia and sales partners in Italy and North America.

About Testbirds

United Kingdom
Testbirds Ltd.
30 Stamford St, South Bank,
London SE1 9LQ
Phone: +31 20 8912375
www.testbirds.com

Germany (Headquarter)
Testbirds GmbH
Radlkoferstraße 2
81373 Munich
Phone: +49 89 8563335-0
www.testbirds.de

Netherlands
Testbirds B.V.
Oostenburgermiddenstr. 202
1018 LL Amsterdam
Phone: +31 20 8912375
www.testbirds.nl

Sweden
Testbirds AB
Vasagatan 16, Box 160
10123 Stockholm
Phone: +31 20 8912375
www.testbirds.se

Would you like to know more?
Visit our website or contact us at

info@testbirds.com

