

@BeforeClass: Executes before all test methods in the
class, but only once.

@BeforeAll: Executes before all test methods in the
class, but only once.

@AfterClass: Executes after all test methods in the
class, but only once.

@AfterAll: Executes after all test methods in the
class, but only once.

@BeforeMet﻿hod: Executes before each test method. @BeforeEach: Executes before each test method.

@AfterMethod: Executes after each tes﻿t method. @AfterEach: Executes after each tes﻿t method.

@BeforeSuite: Executes once before each test suite

@AfterSuit﻿e: Executes once after each test suite

@BeforeTes﻿t: Executes before all test methods in the
class.

@AfterTest: Executes after all test methods in the
class.

Disable Test: In both JUnit and TestNG, annotations allow for the deactivation of specific test methods. In JUnit, the
@Ignore annotation can be used to prevent the execution of a test method. The enabled attribute of the @Test
annotation can be utilised in TestNG to disable the execution of a test method.

Timeout Test: In JUnit and TestNG, both test frameworks allow you to set a timeout for a test method using the
@Test annotation with the timeout parameter. A test must be completed within the specified time. Otherwise a
timeout error will be returned.

 }

 @Test(enabled = false)

public void test1() {

 // test code

 // test code }

@Disabled

@Test

public void test1() {

 }

 @Test(timeOut = 5000) //millisecond

public void test1() {

 // test code

 // test code }

 @Test

 @Timeout(3) //second

public void test1() {

Group Test: Group Test: Organising and categorising tests is standard practice in test automation frameworks. TestNG
provides a thorough solution, whereas JUnit offers a more restricted approach.. In JUnit, test methods can be
categorised using the @Nested annotation, while in TestNG, you can group your test methods by grouping tests with
the "groups" attribute of the @Test annotation.

Report: TestNG provides built-in reporting features that help you create detailed test reports. These reports can be
customised to suit your needs and are usually generated in HTML format. JUnit 5 needs third-party libraries or
extensions to generate detailed test reports. It does not provide built-in reporting features like TestNG.

Exception: In both JUnit and TestNG, you can handle exceptions during testing. In TestNG, you can use the
expectedExceptions attribute in the @Test annotation to specify the expected exception class. In JUnit 5, you can use
the assertThrows() method, which takes the expected exception type and a lambda expression containing the code that
should throw the exception. If the expected exception is thrown, assertThrows() returns the exception for further
inspection.

 }

 @Test(expectedExceptions = ArithmeticException.class)

public void test1() {

 int result = 20/0;

 }

 @Test

public void test1() {

 assertThrows(ArithmeticException.class, () -> {

 int result = 20/0;

 });

Parallel Test: TestNG offers superior support for parallel test
execution compared to JUnit. It allows tests to run at various levels
(method, test, class, instance), whereas JUnit primarily supports
parallelism at the class level. TestNG also provides extensive
flexibility for configuring parallel execution, such as specifying
thread count and test execution order.

Parallel Test: JUnit 4 does not have built-in support for parallel
test execution. In contrast, JUnit 5 introduced limited support for
parallelism with its own parallel test engine, although it is not as
proficient as TestNG.

</suite>

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE suite SYSTEM "https://testng.org/testng-1.0.dtd" >

<suite name="MyTestSuite" parallel="methods">

 <test name="MyTest">

 <classes><class name="MyTestClass" /></classes>

 </test>

A "junit-platform.properties" file is created in the resources packages. The
content of the junit-platform.properties file is as follows:

junit.jupiter.execution.parallel.enabled = true

junit.jupiter.execution.parallel.mode = default

junit.jupiter.execution.parallel.max.threads = 4

 }

 @Execution(ExecutionMode.CONCURRENT)

public class MyTestClass {

 WebDriver driver;

 @Test

 public void testMethod1() {

 driver = new ChromeDriver();

 driver.get(”https://www.google.com”); }

 @Test

 public void testMethod2() {

 driver = new EdgeDriver();

 driver.get(”https://www.google.com”); }

 driver.get(”https://www.google.com”); } }

public class MyTestClass {

 WebDriver driver;

 @Test

 public void testMethod1() {

 driver = new ChromeDriver();

 driver.get(”https://www.google.com”); }

 @Test

 public void testMethod2() {

 driver = new EdgeDriver();

Parameterized Test: JUnit 5 and TestNG both support parameterized tests, which allow you to run the same test
method multiple times with different sets of parameters. In order to create a parameterised test in JUnit 5, the
'@ParameterisedTest' annotation is used, whereas in TestNG, you can use the '@Test' annotation with the
'dataProvider' attribute.

public class testNG {

 @Test(dataProvider = "dataProvider")

 public void testMethod(int a, int b) {

 System.out.println(a+b);

 }

 @DataProvider

 public Object[][] dataProvider() {

 return new Object[][]{

 { 1, 2 },

 { 4, 5 }

 };

 }

} }

public class junit{

 @ParameterizedTest

 @MethodSource("dataProvider")

 public void testMethod(String name, int age) {

 System.out.println(name);

}

static Stream<Arguments> dataProvider() {

 return Stream.of(

 Arguments.of("Alice", 25),

 Arguments.of("Bob", 30)

);

 }

