

 GAURAV SHARMA

Web API Interview Questions

1. What is ASP.NET Web API?

Answer: ASP.NET Web API is a framework for building HTTP services that can be

consumed by various clients, including web browsers and mobile devices. It is

designed to work with HTTP and is particularly suitable for RESTful service

development.

2. Explain the difference between ASP.NET Web API and WCF (Windows

Communication Foundation).

Answer:

• ASP.NET Web API is designed for building HTTP-based services that are

lightweight and RESTful, primarily targeting web and mobile clients.

• WCF, on the other hand, is a comprehensive framework for building

various types of services, including SOAP-based services, TCP services, and

more. It is more complex and versatile but may be overkill for simple HTTP

services.

3. What are the key HTTP verbs used in ASP.NET Web API, and what are their

meanings?

Answer:

• GET: Used to retrieve data from the server.

• POST: Used to create a new resource on the server.

• PUT: Used to update an existing resource on the server.

• DELETE: Used to delete a resource on the server.

• PATCH: Used to partially update a resource on the server.

4. Explain the purpose of routing in ASP.NET Web API.

Answer: Routing in ASP.NET Web API determines how incoming HTTP requests

should be mapped to specific controller actions. It allows you to define URL

patterns and map them to specific actions in your API controllers.

 GAURAV SHARMA

5. What is content negotiation in ASP.NET Web API?

Answer: Content negotiation is the process by which ASP.NET Web API selects

the appropriate response format (e.g., JSON or XML) based on the client's

requested format (typically specified in the Accept header of the HTTP request).

6. What is Model-View-Controller (MVC) in the context of ASP.NET Web API?

Answer: MVC is an architectural pattern that separates the application into three

interconnected components: Model (data), View (presentation), and Controller

(logic). In the context of ASP.NET Web API, it primarily refers to the Controller

component, which handles HTTP requests and generates HTTP responses.

7. Explain attribute routing in ASP.NET Web API.

Answer: Attribute routing is a feature that allows you to define routes using

attributes on your controller actions. This provides a more declarative and

intuitive way to specify how incoming requests should be mapped to actions.

8. What is Cross-Origin Resource Sharing (CORS), and why is it important in a

Web API?

Answer: CORS is a security feature that allows web pages from one domain to

request and access resources on a different domain. In a Web API, CORS is

essential for enabling cross-domain requests, such as those made by web

applications running in a browser while interacting with the API hosted on a

different domain.

9. How can you secure an ASP.NET Web API?

Answer: There are several ways to secure an ASP.NET Web API:

• Token-based authentication (e.g., JWT).

• OAuth or OAuth2 for authentication and authorization.

• API keys.

• SSL/TLS for secure communication.

• Role-based or claims-based authorization.

 GAURAV SHARMA

10. Explain the purpose of the [FromBody] and [FromUri] attributes in Web API

parameter binding.

Answer:

• [FromBody] is used to bind parameters from the request body. It is typically used

with complex objects in POST and PUT requests.

• [FromUri] is used to bind parameters from the URI (query string) of the request. It

is commonly used for GET requests to retrieve data.

11. What is the role of the HttpResponseMessage class in Web API responses?

Answer: HttpResponseMessage is a class used to create HTTP responses in Web API.

It allows you to set the response status code, headers, and content, making it a

flexible way to create customized HTTP responses.

12. What is versioning in Web API, and how can it be implemented?

Answer: Versioning in Web API involves managing different versions of the API

to ensure backward compatibility. It can be implemented using various methods,

including URI versioning, custom request headers, or using a query parameter to

specify the version.

13. Explain the difference between JSON and XML as response formats in Web

API.

Answer:

• JSON (JavaScript Object Notation) is a lightweight data interchange format that is

easy for humans to read and write. It is widely used for Web API responses due to

its simplicity and compactness.

• XML (Extensible Markup Language) is another data interchange format that is

more verbose and structured. It provides additional metadata and is often used in

legacy systems.

14. What is dependency injection, and why is it important in Web API

development?

Answer: Dependency injection is a design pattern that promotes loose coupling

between components in an application. In Web API development, it is important

because it allows you to inject dependencies, such as database context or

 GAURAV SHARMA

services, into controllers, making the code more maintainable, testable, and

flexible.

15. Explain the purpose of the ActionResult class in ASP.NET Web API.

Answer: The ActionResult class in ASP.NET Web API is a base class for all return

types from controller actions. It allows you to return various types of responses,

such as Ok, NotFound, BadRequest, or custom response types, making it versatile for

handling different HTTP status codes and content types.

16. How can you handle errors and exceptions in Web API?

Answer: You can handle errors and exceptions in Web API by using global

exception filters, custom exception handling middleware, or by implementing

error response models for consistent error messages.

17. What are OData controllers, and how are they different from regular Web

API controllers?

Answer: OData controllers in Web API are used to create OData-compliant APIs.

They provide features for querying data using the OData protocol, which allows

clients to filter, order, and project data efficiently. Regular Web API controllers do

not offer OData-specific features out of the box.

18. Explain the concept of content negotiation in Web API, and how does it

work?

Answer: Content negotiation is the process of determining the response format

(e.g., JSON or XML) based on the client's preferences specified in the Accept

header of the HTTP request. Web API uses media formatters to serialize the data

into the requested format, ensuring that clients receive responses in their

preferred format.

19. What is the purpose of attribute-based routing in Web API, and how do you

define routes using attributes?

Answer: Attribute-based routing allows you to define routes for your Web API

controllers and actions using attributes. You can use the [Route] attribute on your

controllers or actions to specify the URI template for each route.

 GAURAV SHARMA

20. How can you implement authentication and authorization in ASP.NET Web

API?

Answer: You can implement authentication and authorization in Web API using

various methods, such as:

• OAuth2 or JWT for authentication.

• Role-based or claims-based authorization.

• Custom authorization filters.

• API keys or API tokens for authentication.

21. Explain the difference between POST and PUT HTTP verbs.

Answer:

1. POST: Used to create a new resource on the server. The server generates a

unique identifier for the resource, and the response typically includes the

newly created resource's URI.

2. PUT: Used to update an existing resource on the server. The client

specifies the resource's URI, and the request replaces the existing resource

with the updated content.

22. When should you use a GET request, and when should you use a POST

request?

Answer: Use a GET request when you want to retrieve data from the server

without causing any side effects. Use a POST request when you want to create or

submit data to the server, and this action may result in side effects, such as

creating a new resource on the server.

23. What are the most commonly used HTTP verbs, and what do they

represent?

Answer: The most commonly used HTTP verbs are:

• GET: Used for retrieving data from the server.

• POST: Used for creating new resources on the server.

• PUT: Used for updating existing resources on the server.

• DELETE: Used for removing resources from the server.

• PATCH: Used for making partial updates to resources.

• HEAD: Similar to GET but retrieves only the headers of a resource without

the actual content.

 GAURAV SHARMA

24. What is idempotence in the context of HTTP methods, and which HTTP

methods are idempotent?

Answer: Idempotence means that making the same request multiple times has

the same effect as making it once. The idempotent HTTP methods are GET, PUT,

and DELETE. POST and PATCH are not idempotent because they can result in

different outcomes with each request.

25. How does the OPTIONS HTTP method work, and what is its primary use?

Answer: The OPTIONS method is used to retrieve information about the

communication options for the target resource, such as which HTTP methods are

supported or what headers are accepted. It is often used for determining the

capabilities of a server and is a part of Cross-Origin Resource Sharing (CORS)

implementation.

26. Explain the purpose of the HEAD HTTP method and how it differs from GET.

Answer: The HEAD method is similar to GET but only retrieves the headers of a

resource, not the actual content. It is used to check the availability and metadata

of a resource without downloading the full content, which can be useful for

optimizing performance and reducing data transfer.

27. When is it appropriate to use the DELETE HTTP method, and what is the

expected outcome of a successful DELETE request?

Answer: The DELETE method is used to request the removal of a resource on the

server. A successful DELETE request results in the resource being deleted from the

server, and subsequent requests to the resource's URI will return a 404 Not Found

response.

28. Explain the role of the PATCH HTTP method and its use cases in resource

modification.

Answer: The PATCH method is used for making partial updates to a resource on

the server. It allows clients to send only the changes or modifications to a

resource, rather than sending the entire resource. This can be more efficient when

working with large or complex resources.

 GAURAV SHARMA

29. How does the PUT method differ from the PATCH method in terms of

resource updates?

Answer:

• PUT: The PUT method is used to completely replace the existing resource with

the new content provided in the request. If the resource already exists, it is

overwritten entirely with the new data.

• PATCH: The PATCH method is used to make partial updates to a resource. It

applies modifications to the resource while preserving the existing data that is

not explicitly modified in the request.

30. What is the role of the POST HTTP method in RESTful web services, and how

is it different from PUT?

Answer:

• POST: The POST method is used to create a new resource on the server. The

server typically generates a unique identifier for the resource, and the response

includes the new resource's URI. It does not require the client to specify the

resource's URI.

• PUT: The PUT method is used to update an existing resource on the server. The

client must specify the resource's URI in the request, and the existing resource is

replaced with the new content provided.

DO Follow GAURAV SHARMA for interview preparation and more such questions.

https://www.linkedin.com/in/gaurav-vansul

 GAURAV SHARMA

