
Created By Eng. Shady Ahmed +201023527158

ISTQB Foundation Level Quick Guide

Chapter 1 Fundamentals of Testing

1.1 What is Software Testing?

 Testing is the process of evaluating a system or its component(s) with the intent to find whether it

satisfies the specified requirements or not.

 Testing is an investigation that can provide stakeholders with information about the quality of the

product or service being tested. Testing is an activity that helps in identifying defects, errors, or missing

requirements.

1.1.1 Typical Objectives of Testing

There are several typical objectives of testing:

 To identify defects and errors in the software product or system being tested.

 To ensure that the software product or system meets the specified requirements and works as

expected.

 To verify that the software product or system works correctly, efficiently, and reliably.

 To improve the quality of the software product or system.

 To increase the confidence of stakeholders in the software product or system.

 To reduce the risks associated with using the software product or system.

1.1.2 Testing and Debugging:

Testing and debugging are two different activities that complement each other.

 Testing involves executing the software product or system to find defects, while debugging involves

identifying and fixing the defects found during testing.

 Testing focused on evaluating the software product or system, while debugging is focused on

identifying and fixing the issues discovered during testing.

Created By Eng. Shady Ahmed +201023527158

1.2 Why is Testing Necessary?

Testing is necessary for several reasons:

 To ensure that the software product or system meets the specified requirements and works as expected

 To identify and fix defects before the software product or system is released to users.

 To improve the quality of the software product or system.

 To reduce the risks associated with using the software product or system.

 To increase the confidence of stakeholders in the software product or system.

1.2.1 Testing’s Contributions to Success

Testing contributes to the success of a software product or system in several ways:

 It helps to identify and fix defects and errors before the software product or system is released to users.

 It improves the quality of the software product or system, leading to increased user satisfaction.

 It reduces the risks associated with using the software product or system, leading to increased user

confidence.

 It helps to ensure that the software product or system meets the specified requirements and works as

expected.

 It helps to identify opportunities for improvement in the software development process.

1.2.2 Quality Assurance and Testing

 Quality assurance is the process of ensuring that the software product or system meets the

specified quality standards.

 Testing is a part of quality assurance that involves evaluating the software product or

system to find defects and errors.

 Quality assurance includes other activities such as process improvement, code reviews, and

requirements management.

1.2.3 Errors, Defects, and Failures

 An error is a human action that produces an incorrect or unexpected result.

 A defect is a flaw or imperfection in the software product or system that can cause it to fail

to meet its requirements.

 A failure is the inability of the software product or system to perform its intended function.

 For example, an error could be a developer coding a feature incorrectly, leading to a defect in the

software product. If this defect is not identified and fixed during testing, it could result in a failure when

the software product is used by the end-users.

Created By Eng. Shady Ahmed +201023527158

1.2.4 Defects, Root Causes and Effects

 A defect has a root cause, which is the underlying reason why the defect occurred.

 The effect is the result of the defect.

 Identifying the root cause of a defect helps in preventing similar defects from occurring in

the future.

 For example, if a software product crashes when a user enters invalid data, the root cause of the defect

could be an inadequate data validation routine. The effect of the defect is the software product

crashing, which results in user frustration and potentially lost revenue.

1.3 Seven Testing Principles

The seven testing principles are a set of fundamental concepts that guide the testing process. These

principles include:

1. Testing shows the presence of defects

2. Exhaustive testing is impossible

3. Early testing saves time and money

4. Defect clustering suggests that a small number of modules contain most of the defects

5. The Pareto principle applies to software testing, meaning that 80% of the defects are found in 20% of

the modules

6. Testing is context-dependent

7. Absence-of-errors fallacy should not be used to measure the success of testing

1.4 Test Process

The test process is a set of activities and tasks that are performed to ensure that the software meets the

requirements and is free of defects.

The test process includes the following phases:

1. Planning and control

2. Analysis and design

3. Implementation and execution

4. Evaluating exit criteria and reporting

5. Test closure activities

Created By Eng. Shady Ahmed +201023527158

1.4.1 Test Process in Context

The test process needs to be adapted to the specific context of the project. The context factors that influence

the test process include the following:

Objectives of testing:

1. Software development lifecycle model

2. Risks associated with the software

3. Business and technical constraints

4. Regulatory and legal requirements

1.4.2 Test Activities and Tasks

Test activities are a set of actions and tasks that are performed during the testing process. Test activities can

be divided into the following categories:

1. Planning and control

2. Analysis and design

3. Implementation and execution

4. Evaluating exit criteria and reporting

5. Test closure activities

-: Test tasks are specific activities that are performed during each test activity.

Test tasks can include:

1. Reviewing the test basis

2. Identifying test conditions

3. Creating test cases

4. Executing test cases

5. Reporting defects

1.4.3 Test Work Products

 Test work products are the deliverables that are created during the testing process.

 Test work products can include:

1. Test plan

2. Test design specification

3. Test case specification

4. Test procedure specification

5. Test log

6. Test summary report

Created By Eng. Shady Ahmed +201023527158

1.4.4 Traceability between the Test Basis and Test Work Products

 Traceability is the ability to follow a requirement or other work product through the development

process to its final implementation.

 Traceability between the test basis and test work products ensures that all requirements are covered by

test cases, and that all test cases are traceable back to the requirements.

 This traceability helps to ensure that all requirements are tested and that the testing is complete.

1.5 The Psychology of Testing

 The psychology of testing is the study of the cognitive and emotional factors that influence the testing

process.

 Understanding the psychology of testing can help testers to improve the effectiveness of their testing.

 Factors that can influence the psychology of testing include:

1. Attention and focus

2. Perception and interpretation

3. Memory and recall

4. Motivation and morale

5. Bias and heuristics

1.5.1 Human Psychology and Testing

 Human psychology and testing are closely related because testing is a human activity that requires

cognitive and emotional skills.

 Testers need to understand the human factors that can influence testing in order to improve the

effectiveness of their testing.

1.5.2 Tester’s and Developer’s Mindsets

 Testers and developers have different mindsets that can influence their approach to testing.

 Testers tend to focus on finding defects, while developers tend to focus on implementing functionality.

 Testers need to understand the developer’s mindset in order to effectively communicate defects and

ensure that they are fixed.

 Developers need to understand the tester’s mindset in order to effectively prioritize and fix defects.

Created By Eng. Shady Ahmed +201023527158

Chapter 2 Testing Throughout the Software Development Lifecycle

2.1 Software Development Lifecycle Models:

 Software Development Lifecycle Models describe the phases of the software development process, and

each phase may require different testing types.

 Examples of software development lifecycle models include Waterfall model, V-model, Agile model, and

Spiral model.

 Each of these models has its own strengths and weaknesses, and organizations may choose a model

based on their specific needs and circumstances.

2.1.1 Software Development and Software Testing:

 Software development is the process of creating software from scratch.

 Software testing is the process of verifying and validating that software is working correctly, meets user

requirements, and is free from defects.

2.1.2 Software Development Lifecycle Models in Context:

 Software Development Lifecycle Models provides a context for testing.

 Testing should be carried out throughout the development process to ensure that the software is

delivered according to user requirements and is of high quality.

 The testing activities should be aligned with the software development lifecycle model.

2.2 Test Levels:

 Test Levels are the stages at which the testing is performed.

 Each level has specific objectives and test types.

 The four test levels are:

1. Component Testing,

2. Integration Testing,

3. System Testing,

4. Acceptance Testing.

2.2.1 Component Testing:

 Component Testing is also known as Unit Testing or Module Testing.

 It is the testing of individual software components, such as functions or procedures, in isolation from

the rest of the system.

Created By Eng. Shady Ahmed +201023527158

2.2.2 Integration Testing:

 Integration Testing is the process of combining the individual components and testing the interactions

between them.

 It ensures that the software components work together as expected and that any defects or issues

resulting from their interactions are identified and resolved.

2.2.3 System Testing:

 System Testing is the process of testing the entire system as a whole.

 It verifies that the system meets the specified requirements and performs as expected.

 System Testing may include functional testing, non-functional testing, and other testing types.

2.2.4 Acceptance Testing:

 Acceptance Testing is the process of verifying that the software meets the user requirements and is

acceptable for delivery.

 It is usually the final stage of testing and may include functional and non-functional testing types.

2.3 Test Types:

Test Types are the techniques used to verify and validate the software.

Different types of testing are required at different test levels to ensure complete testing of the software.

Examples of test types include:

1. Functional Testing,

2. Non-Functional Testing,

3. White-box Testing,

4. Change-related Testing, and others.

Created By Eng. Shady Ahmed +201023527158

2.3.1 Functional Testing:

Functional Testing is the process of verifying that the software meets the functional requirements.

It is usually performed at the System and Acceptance testing levels.

2.3.2 Non-Functional Testing:

Non-Functional Testing is the process of verifying that the software meets the non-functional

requirements, such as:

 performance,

 security,

 usability

-: It is usually performed at the System and Acceptance testing levels.

2.3.3 White-box Testing:

White-box testing, also known as structural testing, is a testing approach where the tester has

access to the internal workings of the system being tested, including its code, data structures, and

algorithms.

 The goal of white-box testing is to ensure that all the code paths are tested, and all possible outcomes

and results are checked.

-: This type of testing is usually performed by developers or testers who have a programming background.

Examples of white-box testing techniques include:

 statement coverage,

 branch coverage,

 path coverage.

2.3.4 Change-related Testing:

Change-related testing is performed when changes are made to the software.

The goal of change-related testing is to ensure that the changes have not introduced any new defects or

issues, and that the existing functionality has not been affected.

Created By Eng. Shady Ahmed +201023527158

Change-related testing can be performed at different levels, such as:

 component,

 integration,

 system testing

can use different types of testing, such as:

 regression testing,

 functional testing,

 non-functional testing.

2.3.5 Test Types and Test Levels:

Test types and test levels are related to each other, as different test types are usually performed at different

test levels.

For example, functional testing is usually performed at the system and acceptance test levels, while non-

functional testing, such as performance testing and security testing, is usually performed at the system and

integration test levels.

White-box testing is usually performed at the component and integration test levels.

It is important to choose the appropriate test types and test levels based on the project's objectives,

requirements, and risks.

2.4 Maintenance Testing:

Maintenance testing is a type of testing that is performed after the software has been released and is in use by

the end-users.

The purpose of maintenance testing is to identify and fix defects and issues that arise during the software's

maintenance phase.

Maintenance testing can be triggered by different factors, such as user feedback, changes in the software

environment, and the introduction of new hardware or software components.

Maintenance testing can use different techniques, such as regression testing, corrective testing, and preventive

testing.

Created By Eng. Shady Ahmed +201023527158

2.4.1 Triggers for Maintenance:

Maintenance testing can be triggered by various factors, such as:

 user feedback,

 changes in the software environment,

 the introduction of new hardware or software components.

-: User feedback can include bug reports, feature requests, and usability issues.

-: Changes in the software environment can include changes in the operating system, web browser, or

database management system.

-: The introduction of new hardware or software components can include the addition of new peripherals or

the integration of third-party libraries.

2.4.2 Impact Analysis for Maintenance:

-: Impact analysis for maintenance is the process of evaluating the impact of a change on the software and its

components.

-: The purpose of impact analysis is to determine the scope of the change and identify the areas of the

software that may be affected.

Impact analysis can use different techniques, such as:

 static analysis,

 dynamic analysis,

 traceability analysis.

Static analysis involves examining the source code and other software artifacts without executing the

software.

Dynamic analysis involves executing the software with test cases and analyzing its behavior.

Traceability analysis involves tracing the requirements, design, and test artifacts to identify the impact of a

change.

Created By Eng. Shady Ahmed +201023527158

Chapter 3 Static Testing

Static testing is a technique that examines a software product or related documentation without executing the

code.

This technique can be applied throughout the software development lifecycle and has several benefits,

including the early detection of defects and the improvement of software quality.

3.1 Static Testing Basics:

-: Static testing is a testing technique that verifies a software product's defects or issues without running the

software.

-: It focuses on the product's static attributes such as code, requirements, design documents, and

specifications.

-: Static testing involves reviewing and analyzing documents, codes, or other work products in a structured

manner.

3.1.1 Work Products that Can Be Examined by Static Testing:

There are several work products that can be examined using static testing, such as:

 requirements documents,

 design documents,

 test plans,

 test cases,

 code,

 user manuals, and other related documents.

3.1.2 Benefits of Static Testing:

Static testing has several benefits, including early detection of defects, improved software quality, cost-

effectiveness, and increased efficiency.

It also helps in identifying defects that may be difficult to find during dynamic testing, such as boundary value

analysis and equivalence partitioning.

3.1.3 Differences between Static and Dynamic Testing:

Static testing differs from dynamic testing in terms of its approach and objectives.

Dynamic testing is focused on the execution of code and the identification of defects during runtime, while

static testing is focused on the verification of a software product's static attributes without executing the code.

Created By Eng. Shady Ahmed +201023527158

3.2 Review Process:

The review process involves a group of individuals reviewing a software product or documentation to identify

defects and improve quality.

This process can be formal or informal and can take place at different stages of the software development

lifecycle.

3.2.1 Work Product Review Process:

The work product review process involves the following steps:

1. Planning the review

2. Kick-off meeting

3. Reviewing the work product

4. Issue identification and documentation

5. Rework and follow-up

3.2.2 Roles and Responsibilities in a Formal Review:

There are different roles involved in a formal review process, such as:

 the moderator,

 author,

 reviewer,

 scribe.

Each role has specific responsibilities, such as the moderator who ensures that the review process is conducted

in a structured manner and the author who presents the work product being reviewed.

3.2.3 Review Types:

There are different types of reviews, including:

 informal reviews,

 formal reviews,

 technical reviews,

 walkthroughs.

Each type of review has its objectives and is conducted at different stages of the software development

lifecycle.

Created By Eng. Shady Ahmed +201023527158

3.2.4 Applying Review Techniques:

Review techniques include:

 walkthroughs,

 inspections,

 peer reviews.

These techniques can be applied to different types of work products and have different objectives, such as

identifying defects or improving software quality.

3.2.5 Success Factors for Reviews:

Success factors for reviews include having clear objectives, a structured review process, adequate preparation,

and ensuring that the right people are involved.

Other success factors include having a positive attitude, constructive feedback, and a willingness to learn and

improve.

Created By Eng. Shady Ahmed +201023527158

Chapter 4 Test Techniques

4.1 Categories of Test Techniques:

Test techniques can be broadly divided into three categories:

1. black-box techniques,

2. white-box techniques,

3. experience-based techniques.

Testers choose appropriate test techniques based on the software being tested, the requirements, and other

factors such as time and resources.

4.1.1 Choosing Test Techniques:

The decision of which test technique to use depends on several factors, including

1. system's complexity,

2. risks associated with the system,

3. availability of documentation,

4. testing objectives,

5. skill level of the testing team.

Testers may use a combination of different techniques to achieve better test coverage.

4.1.2 Categories of Test Techniques and Their Characteristics:

Black-box techniques focus on testing the system without knowledge of its internal workings, while white-box

techniques involve testing the system with knowledge of its internal workings.

Experience-based techniques involve testing based on the tester's experience, intuition, and creativity.

4.2 Black-box Test Techniques:

Black-box test techniques are designed to test the system without knowledge of its internal workings.

These techniques are useful in testing the functionality of the system and ensuring that it meets the

requirements.

Examples of black-box test techniques include equivalence partitioning, boundary value analysis, decision

table testing, state transition testing, and use case testing.

Created By Eng. Shady Ahmed +201023527158

4.2.1 Equivalence Partitioning:

Equivalence partitioning is a black-box test technique that involves dividing the input domain of a system into

groups of equivalent inputs.

The idea is to select a representative test case from each group, which should provide similar testing results.

For example, if a system accepts inputs in the range of 1 to 100, then the input domain can be divided into

three equivalence classes: inputs less than 1, inputs between 1 and 100, and inputs greater than 100.

4.2.2 Boundary Value Analysis:

Boundary value analysis is a black-box test technique that involves testing the boundaries of an input domain.

The idea is to test the values at the boundaries of the input domain, as these are likely to be more prone to

errors.

For example, if a system accepts inputs in the range of 1 to 100, then the boundary values to be tested would

be 1, 100, and values just below or above these limits.

4.2.3 Decision Table Testing:

Decision table testing is a black-box test technique that involves creating a table to represent the

combinations of inputs and expected outputs for a given set of business rules.

The tester can then use the decision table to derive test cases that cover all the possible combinations of

inputs and expected outputs.

4.2.4 State Transition Testing:

State transition testing is a black-box test technique that involves testing the behavior of a system as it moves

from one state to another.

The tester identifies the various states of the system and the events that cause it to transition from one state

to another.

The tester then creates test cases to ensure that the system behaves correctly during these transitions.

Created By Eng. Shady Ahmed +201023527158

4.2.5 Use Case Testing:

Use case testing is a black-box test technique that involves testing the system's behavior from the user's

perspective.

The tester identifies the various use cases for the system and creates test cases to ensure that the system

behaves correctly for each use case.

4.3 White-box Test Techniques:

White-box test techniques, also known as structural or code-based techniques, focus on the internal workings

of the software being tested.

These techniques are primarily used for testing software at the unit, integration, and system levels, and rely on

the knowledge of the internal code and structure of the software.

Some of the commonly used white-box techniques are statement coverage, decision coverage, and condition

coverage.

4.3.1 Statement Testing and Coverage:

Statement coverage is a white-box technique that ensures each statement in the code is executed at least

once during testing.

It involves creating test cases that execute each statement in the code, ensuring that all statements are

covered.

Statement coverage is a useful technique for detecting issues with the flow of control in the code.

4.3.2 Decision Testing and Coverage:

Decision coverage is a white-box technique that ensures that all possible decisions in the code have been

tested.

A decision is a point in the code where the program has a choice of two or more possible paths.

Decision coverage involves creating test cases that ensure that all decisions in the code have been exercised,

both true and false.

Created By Eng. Shady Ahmed +201023527158

4.3.3 The Value of Statement and Decision Testing:

Statement and decision testing are important techniques for verifying the correctness of the code.

These techniques can help to identify issues with the flow of control in the code, and ensure that all possible

paths through the code have been tested.

4.4 Experience-based Test Techniques:

Experience-based test techniques rely on the knowledge, skill, and intuition of the testers to identify potential

issues with the software being tested.

These techniques are typically used in situations where the requirements are unclear or incomplete, or where

the software is complex or difficult to test.

4.4.1 Error Guessing:

Error guessing is an experience-based test technique that involves using the tester's knowledge and

experience to guess what types of errors might occur in the software being tested.

The tester then creates test cases that specifically target those types of errors. This technique can be

particularly effective in identifying issues that may not be apparent from the requirements or design

documentation.

4.4.2 Exploratory Testing:

Exploratory testing is an experience-based test technique that involves ad-hoc testing of the software being

tested, based on the tester's intuition and knowledge.

This technique is particularly useful in situations where the software is complex or difficult to test, or where the

requirements are unclear or incomplete.

4.4.3 Checklist-based Testing:

Checklist-based testing is an experience-based test technique that involves using a predefined checklist of

items to be tested.

The checklist can include items such as common errors, performance issues, or usability issues.

The tester then creates test cases that specifically target the items on the checklist.

This technique can be particularly useful in ensuring that important areas of the software are not overlooked

during testing.

Created By Eng. Shady Ahmed +201023527158

Chapter 5 Test Management

5.1 Test Organization:

Independent testing refers to testing conducted by a group that is separate from the development team.

This separation can help to increase objectivity, improve quality, and reduce the possibility of conflicts of

interest.

Independent testers may be part of a separate team or organization, or they may work within the same

organization but report to a different manager.

The tasks of a test manager may include defining the test strategy, planning and controlling the testing effort,

allocating resources, and communicating with stakeholders.

The tasks of a tester may include designing test cases, executing tests, reporting defects, and analyzing test

results.

5.2 Test Planning and Estimation:

A test plan is a document that describes the objectives, scope, approach, and schedule of the testing effort.

It should include details on the test strategy, test approach, entry criteria, exit criteria, and test execution

schedule.

The test plan should be reviewed and approved by all relevant stakeholders.

Test estimation involves predicting the amount of time, effort, and resources required to complete the testing

effort.

This can be challenging due to the uncertainty involved in software development and the complexity of

testing.

Test estimation techniques include

1. expert judgment,

2. historical data,

3. metrics-based approaches.

Created By Eng. Shady Ahmed +201023527158

5.3 Test Monitoring and Control:

Test monitoring involves collecting and analyzing data on the testing effort to determine its status and

progress.

Test control involves taking corrective action to address issues that arise during testing.

Test metrics can be used to monitor and control the testing effort, such as defect metrics, test coverage

metrics, and test progress metrics.

Test reports provide information on the testing effort to stakeholders, including test results, defects found,

and progress made.

The contents of a test report may vary depending on the audience, but should be accurate, relevant, and

timely.

5.4 Configuration Management:

Configuration management is the process of identifying, organizing, and controlling changes to the software

being tested, including its documentation, requirements, design, code, and test artifacts.

Testers must ensure that changes to the software do not affect the testing effort and that any changes made

during the testing process are controlled and traceable.

Configuration management tools and processes are used to manage and maintain the various software

versions and artifacts, and to ensure that only authorized individuals make changes to them.

5.5 Risks and Testing:

In the context of testing, risk refers to the probability of a failure occurring and the impact of that failure on

the software, its users, and the organization as a whole.

Risk-based testing involves identifying the risks that could affect the software and using that information to

determine the types of tests that should be performed.

Testers must understand the different types of risks and how they can impact testing, and they must work with

the project team to develop a risk management plan.

This plan should include :

1. risk identification,

2. analysis,

3. mitigation strategies.

Created By Eng. Shady Ahmed +201023527158

5.6 Defect Management:

Defect management involves the process of identifying, documenting, tracking, and resolving defects found

during the testing process.

Testers must use a defect management tool to log defects, track their status, and communicate with the

development team about their resolution.

Defects should be categorized based on their severity, and priorities should be assigned based on the impact

they have on the software.

Testers must also perform root cause analysis to determine the underlying cause of the defect and to prevent

similar defects from occurring in the future.

Defect metrics can be used to track and report on the effectiveness of the defect management process.

Created By Eng. Shady Ahmed +201023527158

Chapter 6 Tool Support for Testing

6.1.1 Test Tool Classification:

Test tools can be broadly classified into four categories:

1. Test management tools: these tools help in planning, organizing, and managing the testing

activities.

2. Static testing tools: these tools help in performing static testing techniques like reviews and

inspections.

3. Test design tools: these tools help in designing test cases and test scenarios.

4. Test execution tools: these tools help in executing the test cases, capturing the results, and

generating test reports.

6.1.2 Benefits and Risks of Test Automation:

The benefits of test automation include:

1. Increased test coverage: automated tests can cover more scenarios than manual testing.

2. Improved test accuracy: automated tests are less prone to errors than manual testing.

3. Reusability: automated tests can be reused multiple times.

4. Cost reduction: automated tests can save costs in the long run.

The risks of test automation include:

1. High initial cost: automation tools can be expensive, and setting up the automation environment can be

time-consuming.

2. Maintenance overhead: automated tests require maintenance, and any changes in the application can

break the automated tests.

3. Limited scope: automation cannot replace manual testing completely, as certain types of testing like

exploratory testing require human intuition.

6.2.1 Main Principles for Tool Selection:

The main principles for selecting a tool are:

1. Identify the problem to be solved: the tool should be selected based on the specific problem it solves.

2. Evaluate the tool against the requirements: the tool should meet the functional and non-functional

requirements.

3. Ensure compatibility with the existing environment: the tool should be compatible with the existing

tools and technologies.

4. Assess the cost and benefits: the tool should provide significant benefits for the cost incurred.

Created By Eng. Shady Ahmed +201023527158

6.2.2 Pilot Projects for Introducing a Tool into an Organization:

 Pilot projects are useful to introduce a new tool into an organization.

 The pilot project involves selecting a small project or a subset of the larger project and using the tool to

test it.

 The pilot project provides the opportunity to evaluate the tool's effectiveness, identify any issues, and

make changes as necessary.

6.2.3 Success Factors for Tools:

The success of a tool depends on several factors:

 Tool selection: selecting the right tool for the right problem.

 Tool customization: customizing the tool to fit the specific needs of the organization.

 Training: providing adequate training to the users to effectively use the tool.

 Tool support: ensuring that the tool is supported and maintained properly.

 Tool integration: integrating the tool with other tools and technologies used in the organization.

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

Created By Eng. Shady Ahmed +201023527158

